Bayesian inference on the scalar skew-normal distribution
نویسندگان
چکیده
In this paper we discuss a Bayesian analysis of the scalar skew-normal model. This model defines a class of distributions that extends the Gaussian model by including a shape parameter. Although the skew-normal model has nice properties, it presents some problems with the estimation of the shape parameter. To avoid these drawbacks, we explore through some examples the use of Severini’s integrated likelihood function in Bayesian inference.
منابع مشابه
The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملInference for a Skew Normal Distribution Based on Progressively Type-II Censored Samples
In many industrial experiments involving lifetimes of machines or units, experiments have to be terminated early or the number of experiments must be limited due to a variety of circumstances (e.g. when expensive, etc.) the samples that arise from such experiments are called censored data. Cohen (1991) was one of the earliest to study a more general censoring scheme called progressive censor...
متن کاملApproximate Bayesian inference in spatial GLMM with skew normal latent variables
Spatial generalized linear mixed models are common in applied statistics. Most users are satisfied using a Gaussian distribution for the spatial latent variables in this model, but it is unclear whether the Gaussian assumption holds. Wrong Gaussian assumptions cause bias in parameter estimates and affect the accuracy of spatial predictions. Thus, there is a need for more flexible priors for the...
متن کاملAn Extension of the Birnbaum-Saunders Distribution Based on Skew-Normal t Distribution
In this paper, we introducte a family of univariate Birnbaum-Saunders distributions arising from the skew-normal-t distribution. We obtain several properties of this distribution such as its moments, the maximum likelihood estimation procedure via an EM-algorithm and a method to evaluate standard errors using the EM-algorithm. Finally, we apply these methods to a real data set to demonstr...
متن کاملBayesian Inference for Shape Mixtures of Skewed Distributions, with Application to Regression Analysis
We introduce a class of shape mixtures of skewed distributions and study some of its main properties. We discuss a Bayesian interpretation and some invariance results of the proposed class. We develop a Bayesian analysis of the skew-normal, skew-generalized-normal, skew-normal-t and skew-t-normal linear regression models under some special prior specifications for the model parameters. In parti...
متن کامل